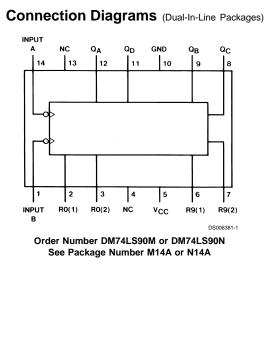
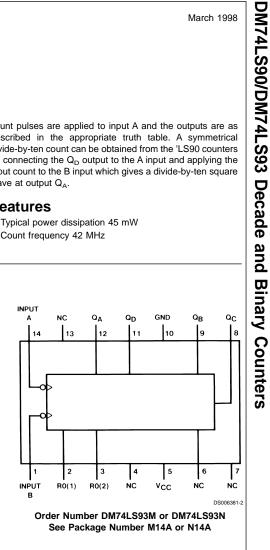
FAIRCHILD

DM74LS90/DM74LS93 **Decade and Binary Counters**

General Description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 'LS90 and divide-by-eight for the 'LS93.


All of these counters have a gated zero reset and the LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.


To use their maximum count length (decade or four bit binary), the B input is connected to the Q_A output. The input

count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 'LS90 counters by connecting the \mathbf{Q}_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS006381

Absolute Maximum	Ratings (Note 1)
------------------	------------------

Supply Voltage	7V
Input Voltage (Reset)	7V
Input Voltage (A or B)	5.5V

Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Parameter		DM74LS90			
			Min	Nom	Max		
V _{cc}	Supply Voltage		4.75	5	5.25	V	
VIH	High Level Input Voltage		2			V	
VIL	Low Level Input Voltage				0.8	V	
I _{он}	High Level Output Current				-0.4	mA	
I _{OL}	Low Level Output Current				8	mA	
f _{CLK}	Clock Frequency (Note 2)	A to Q _A	0		32	MHz	
		B to Q _B	0		16	7	
f _{CLK}	Clock Frequency (Note 3)	A to Q _A	0		20	MHz	
		B to Q _B	0		10	1	
t _w	Pulse Width (Note 2)	A	15				
		В	30			ns	
		Reset	15]	
t _w	Pulse Width (Note 3)	A	25				
		В	50			ns	
		Reset	25			1	
t _{REL}	Reset Release Time (Note 2)	Reset Release Time (Note 2)				ns	
t _{REL}	Reset Release Time (Note 3)		35			ns	
T _A	Free Air Operating Temperature	9	0		70	°C	

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS90 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max					
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		(Note 7)					
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	1
l _i	Input Current @ Max	V_{CC} = Max, V_{I} = 7V	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		V ₁ = 5.5V	В			0.4	1
I _{IH}	High Level Input	V _{CC} = Max, V _I = 2.7V	Reset			20	
	Current		А			40	μA
			В			80	1

'LS90 Electrical Characteristics (Continued)

over recor	mmended operating free air	temperature range (unless oth	erwise noted	d)		
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max
I _{IL}	Low Level Input	V_{CC} = Max, V_{I} = 0.4V	Reset			-0.4
	Current		A			-2.4

Output Current I_{CC} Supply Current V_{CC} = Max (Note 4) Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Short Circuit

 I_{OS}

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

V_{CC} = Max (Note 5)

Note 7: QA outputs are tested at IOL = Max plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

В

-20

9

'LS90 Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)	$R_L = 2 k\Omega$				
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	A to Q _D		48		52	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _D		50		60	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _B		16		23	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _B		21		30	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _C		32		37	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _D		32		36	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _D		35		44	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	SET-9 to		30		35	ns
	Low to High Level Output	Q _A , Q _D					
t _{PHL}	Propagation Delay Time	SET-9 to		40		48	ns
	High to Low Level Output	Q _B , Q _C					
t _{PHL}	Propagation Delay Time	SET-0 to		40		52	ns
	High to Low Level Output	Any Q					

www.fairchildsemi.com

Units

mΑ

mΑ

mΑ

-3.2

-100

15

Symbol	Paramete	r		DM74LS93		Units
			Min	Nom	Max	
V _{cc}	Supply Voltage		4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
I _{он}	High Level Output Current				-0.4	mA
I _{OL}	Low Level Output Current				8	mA
f _{CLK}	Clock Frequency (Note 8)	A to Q _A	0		32	
		B to Q _B	0		16	MHz
f _{CLK}	Clock Frequency (Note 9)	A to Q _A	0		20	
		B to Q _B	0		10	1
t _{vv}	Pulse Width (Note 8)	A	15			
		В	30			ns
		Reset	15			
t _{vv}	Pulse Width (Note 9)	A	25			
		В	50			ns
	Reset	25				
t _{REL}	Reset Release Time (Note 8)	•	25			ns
t _{REL}	Reset Release Time (Note 9)		35			ns
T _A	Free Air Operating Temperatu	ire	0		70	°C

Note 8: $C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$. Note 9: $C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$.

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 10)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max					
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		(Note 13)					
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	
l _i	Input Current @Max	$V_{CC} = Max, V_I = 7V$	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		V ₁ = 5.5V	В			0.4	
I _{IH}	High Level Input	V _{CC} = Max	Reset			20	
	Current	V ₁ = 2.7V	А			40	μA
			В			80	
I _{IL}	Low Level Input	$V_{CC} = Max, V_I = 0.4V$	Reset			-0.4	
	Current		A			-2.4	mA
			В			-1.6	
los	Short Circuit	V _{CC} = Max (Note 11)	•	-20		-100	mA
	Output Current						
I _{cc}	Supply Current	V _{CC} = Max (Note 12)			9	15	mA

Note 10: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 12: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 13: Q_A outputs are tested at I_{OL} = max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

		From (Input)		-	2 k Ω		
Symbol	Parameter	To (Output)	_	15 pF	-	50 pF	Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	A to Q _D		70		85	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _D		70		90	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _B		16		23	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _B		21		30	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _C		32		37	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _D		51		60	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _D		51		70	ns
	High to Low Level Output						
t _{PHL}	Propagation Delay Time	SET-0 to		40		52	ns
	High to Low Level Output	Any Q					

Function Tables LS90 BCD Count Sequence

Count	Output							
	Q _D	Qc	Q _B	Q _A				
0	L	L	L	L				
1	L	L	L	н				
2	L	L	Н	L				
3	L	L	Н	Н				
4	L	Н	L	L				
5	L	Н	L	Н				
6	L	Н	Н	L				
7	L	Н	Н	Н				
8	н	L	L	L				
9	н	L	L	н				

LS93 Count Sequence (Note 16)

(Note 16		Out	tput	
	QD	Q _c	Q _B	Q _A
0	L	L	L	L
1	L	L	L	н
2	L	L	н	L
3	L	L	н	н
4	L	н	L	L
5	L	н	L	н
6	L	н	н	L
7	L	н	н	н
8	н	L	L	L
9	н	L	L	н
10	н	L	н	L
11	н	L	н	н
12	н	н	L	L
13	н	н	L	н
14	н	н	н	L
15	н	н	н	н

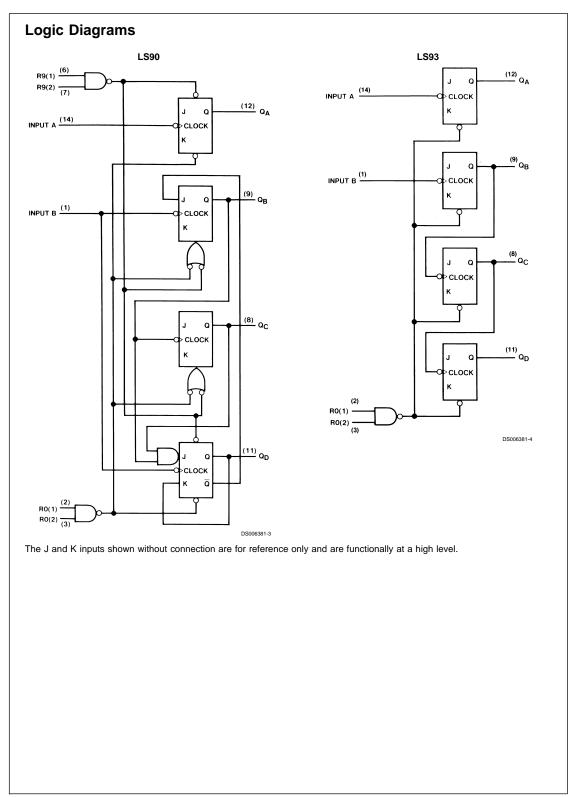
LS90 Bi-Quinary (5-2)

(Note 15)					
Count	Output				
	Q _A	QD	Q _c	Q _B	
0	L	L	L	L	
1	L	L	L	н	
2	L	L	Н	L	
3	L	L	Н	н	
4	L	н	L	L	
5	н	L	L	L	
6	н	L	L	н	
7	н	L	н	L	
8	н	L	н	н	
9	н	н	L	L	

 Note 14:
 Output Q_A is connected to input B for BCD count.

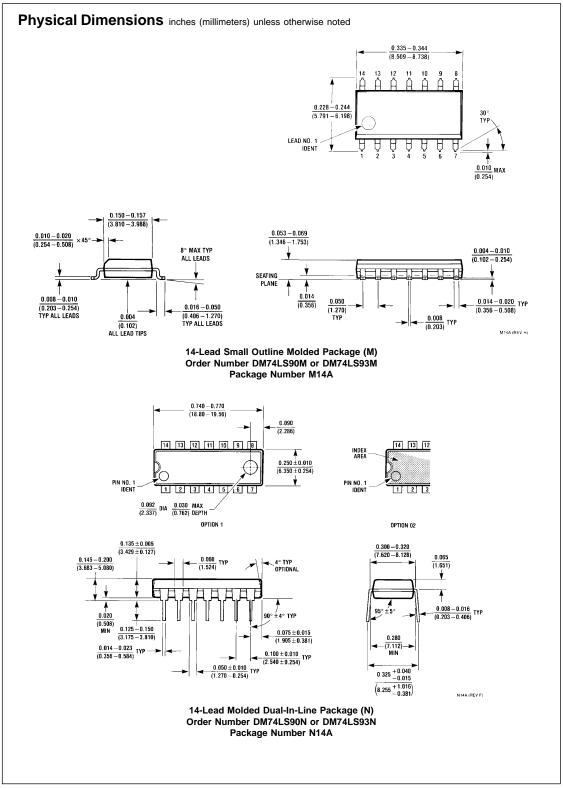
 Note 15:
 Output Q_D is connected to input A for bi-quinary count.

 Note 16:
 Output Q_A is connected to input B.


 Note 17:
 H = High Level, L = Low Level, X = Don't Care.

LS90 Reset/Count Truth Table

Reset Inputs				Out	put		
R0(1)	R0(2)	R9(1)	R9(2)	Q_{D}	Q_{c}	Q_B	$\mathbf{Q}_{\mathbf{A}}$
н	Н	L	Х	L	L	L	L
н	Н	Х	L	L	L	L	L
x	Х	н	н	н	L	L	н
x	L	Х	L	COUNT			
L	Х	L	Х	COUNT			
L	Х	Х	L	COUNT			
x	L	L	Х	COUNT			


LS93 Reset/Count Truth Table

Reset Inputs		Output			
R0(1)	R0(2)	Q_{D}	Q _c	Q _B	Q _A
н	Н	L	L	L	L
L	Х	COUNT			
Х	L	COUNT			

www.fairchildsemi.com

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor	
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.	
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175	
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179	
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon		
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong		
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200		
w.fairchildsemi.com		Fax: +852 2314-0061		

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.