

Microcomputer Components

8xC166
SAB 80C166 Family ApNotes

Application Note of the
On-chip Bootstrap Loader

Advance Information 9.94

Bootstrap Loader

 8xC166

Edition 9.94 (Advance Information)

This edition was realized using the software system FrameMaker

®

.

Published by Siemens AG, Bereich Halbleiter,
Balanstraße 73, D-8000 München 80

©

 Siemens AG 1993 All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for
components per se, not for applications, processes and circuits implemented within components or
assemblies.

The information describes the type of component and shall not be considered as assured
characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of Semiconductor
Group in Germany or the Siemens Companies and Representatives worldwide.

Due to technical requirements components may contain dangerous substances. For information on
the type in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

8Oct96@15:19h

Advance Information 9.94

Bootstrap Loader

Contents

1 Introduction

2 Purpose of a bootstrap loader (BSL)

3 General operation of the bootstrap loader

4 Hardware environment to use the bootstrap loader
4.1 How to activate the bootstrap loader
4.2 Hardware example for bootstrap loader activation
4.3 Special characteristics of the SAB 8xC166 in bootstrap loader mode
4.4 Reset configuration and memory access
4.5 Which baudrates does the bootstrap loader accept
4.5.1 Lower limit of the baudrate
4.5.2 Upper limit of the baudrate
4.5.3 Example

5 User software loaded with the bootstrap loader
5.1 How to enable the external memory
5.2 Program examples how to program the BSL
5.2.1 Example 1: The first test program loaded via the BSL to the internal memory
5.2.2 Example 2: Load user software to internal memory
5.2.3 Example 3: Load user software to external memory

6 Appendix
6.1 USER_SOFTWARE_1
6.2 PRELOADER_1
6.3 USER_SOFTWARE_2
6.4 EXTERNAL_LOADER_1
6.5 USER_SOFTWARE_3
SAB 80C166 Family ApNotes -3- SAB 8xC166

8Oct96@15:19h

Bootstrap Loader

Advance Information 9.94

1 Introduction

In the SAB 8xC166(W), an on-chip bootstrap loader (BSL) is implemented and introduced with the
CB-step. The BSL code is stored in a special Boot-ROM. With the BSL it is possible to load a
program of 32 bytes into the internal RAM of the SAB 8xC166 via the Serial Port 0 (ASC0), even if
there is no internal or external program memory available. This short program can be used to load
extensive user software to internal RAM or external memory.

Note that not all emulators support emulation of the BSL feature of the SAB 8xC166.

2 Purpose of a bootstrap loader

As already mentioned, it is possible to load a program to the internal or external memory of the SAB
8xC166 via the BSL. Fundamentally there is distinguished between three different kinds of software
applications:

I) The BSL loads the basic software to the system
The system includes no software. The whole application software is loaded to the system via the
BSL.
Typical application: > End of line programming

> (Monitor for the Ertec EVA board)

II) The BSL loads temporary software to the system
The system includes already the complete application software, but only for special tests an
additional software is necessary. This ‘temporary’ test software is only needed for the duration
of the test.
Typical application: > End of line testing

> Debugging, diagnostics, testing

III) The BSL loads additional software to the system
The basic system includes a standard application software which has to be adapted to the
different versions of a product. This is done with an additional application software loaded via
the BSL.
Typical application: > End of line programming

The different kind of software applications can be mixed with different system hardware concerning
the memory available on the system.
The application software can be loaded via the BSL to the:

1) Internal RAM
2) External RAM
3) Internal Flash EPROM
4) External Flash EPROM

Note that the BSL is not a Flash EPROM programming algorithm. The BSL is a program which can
be used to load the Flash EPROM programming algorithm. Using the BSL to load a Flash EPROM
programming algorithm is only one of several ways:
SAB 8xC166 -4- SAB 80C166 Family ApNotes

8Oct96@15:19h

Advance Information 9.94

Bootstrap Loader

> Programming with a programming board
> In-System programming with system memory:
 the programming algorithm is executed from system memory
> In-System programming with on-chip BSL:
 the programming algorithm is downloaded into the target system via the BSL

3 General operation of the bootstrap loader

The BSL is activated at the end of a hardware reset, if pin ALE is sampled at high level, and if NMI
is activated directly after the internal reset sequence has been terminated. The BSL is entered
regardless of the state of pins EBC0, EBC1 and BUSACT. In this bootstrap loading mode, the SAB
8xC166 now expects the serial reception of a zero byte (one startbit, 00H data, one stop bit, no
parity) from a host at pin RxD0 (P3.11), from which it calculates the necessary factor for the serial
port baudrate generator, taking into account the operating frequency of the CPU.

According to the calculated baudrate, the serial port ASC0 is initialized (one start bit, 8 data bits, one
stop bit, no parity), and an identification byte, 055H, is sent back to the host. The members of the
SAB8xC16x family send different identification bytes. After sending the identification byte, the BSL
goes into a receive loop, expecting to receive exactly 32 bytes data from a host. If less than 32 bytes
are received the SAB 8xC166 waits forever, no timeout is performed. The received bytes are stored
sequentially into the internal RAM, beginning at address 0’FA40H, and ending at address 0’FA5FH.
After the reception of the 32 bytes, the BSL automatically performs a jump to location 0’FA40H, and
the loaded program is executed. See figure 1.

4 Hardware environment to use the bootstrap loader

During a normal reset (without activation of the internal Boot-ROM), ALE is switched to input and
held low via an internal pulldown device. After termination of the internal reset sequence, the
pulldown device is turned off, and ALE is switched to output mode, driving an active low level.

4.1 How to activate the bootstrap loader

The SAB 8xC166 which implements the BSL function is forced to enter the Boot-ROM and to
execute the built-in bootstrap loader routine in two steps:

The first step is to switch the SAB 8xC166 to the internal Boot-ROM, therefore ALE must be high
during RSTIN is low. This can be achieved by connecting an external device which has to be strong
enough to pull the ALE pin to a logic high level. A typical value of a pullup resistor in normal systems
is 2.2kΩ. Note also, that the state at the BUSACT, EBC1 and EBC0 input pins have to be stable
during and at the end of reset to avoid unexpected effects. NMI has also to be stable during reset.

SAB 80C166 Family ApNotes -5- SAB 8xC166

8Oct96@15:19h

Bootstrap Loader

Advance Information 9.94

Figure 1: Bootstrap loader sequence

tALE

tNMI

ALE

RSTIN

TxD0

Int. Boot-ROM BSL-routine
 32 bytes

NMI

1)

2)

RxD0
E

CSP:IP

 user software

3)

2) Identification byte from SAB 8xC166: 55H
3) 32 bytes from host

tALE : (0 - 0.25)µsec (20MHz CPU clock)

tNMI : (0 - 1.2)msec (20MHz CPU clock)

1) Zero byte: Start bit, 00H data byte and one stop bit from host

4) Internal Boot-ROM

4)

external pullup

ALE input,
high impedance

ALE output, forced low by SAB 8xC166

MSBLSB

LSB MSB

tNMI MAX()
25900
fCPU
---------------≤
SAB 8xC166 -6- SAB 80C166 Family ApNotes

8Oct96@15:19h

Advance Information 9.94

Bootstrap Loader

The second step is to start the BSL routine in the internal Boot-ROM. This can be achieved by
activating the NMI pin directly after RSTIN is inactive. The timing window from RSTIN inactive to
NMI active is 1.2msec, at 20MHz CPU clock. See figure 1, time tNMI.

The following circuit is recommended for activation of the BSL in the two steps described above:

1) connect ALE with NMI
2) connect an appropriate pullup device to the ALE/NMI line

In systems where the NMI pin is not used, a pullup device should be connected to NMI in any case
to prevent erroneous NMI traps. Thus, only the (switchable) connection between ALE and NMI is
required for entry into the BSL.

Special care has to be taken when designing the pullup device. External devices connected to ALE
(e.g. an address latch) and NMI and their loads have to be taken into account (e.g. some TTL
devices tend to pull a line connected to their inputs to high, acting as an additional pullup in parallel).
The pullup must be strong enough to raise the voltage at the ALE pin during reset above the lower
VIH limit of 0.2VCC + 0.9V. On the other hand, it must be weak enough to allow the ALE output to
drive a low level after reset (IOL of 2.4mA at a VOL of 0.4V).

4.2 Hardware example for bootstrap loader activation

Figure 2 shows two principle possibilities how to realize a circuit activating the BSL. The first circuit
shows a simple way how to activate the BSL during a hardware reset. If it is desired to leave the BSL
mode via a software reset, the connection between ALE and NMI has to be removed, before a
software reset is executed and an access to the external memory is performed. Otherwise, if the
interrupt system is already enabled, every ALE pulse would cause an NMI. Before performing a
hardware reset without activating the BSL, circuit_1 has to be removed, too.
In the second circuit the connection of ALE and NMI is switchable with the RSTOUT signal or with
a hardware switch. The hardware switch allows to select between normal system start or start via
BSL. In BSL mode the deactivation of RSTOUT, which is done by the EINIT instruction, disconnects
ALE and NMI.

In order to return to normal operation, a hardware or software reset must be executed to terminate
the BSL mode. The activation of the BSL is only performed with an external hardware reset (RSTIN)
and a BSL entry hardware circuit, while a software reset ignores the state of pin ALE. Care must be
taken, however, that for a normal hardware reset the condition for entering the BSL is removed,
otherwise the system starts in BSL mode. Immediately after a software reset was performed the
connection between ALE and NMI has to be removed, too, because the code fetch, from the
external memory address 0’0000H causes an ALE pulse and thus activates NMI.

Note also, that the configuration for the bus type is set appropriately for a hardware and software
reset.
SAB 80C166 Family ApNotes -7- SAB 8xC166

8Oct96@15:19h

Bootstrap Loader

Advance Information 9.94

Figure 2: Two exemplary circuit diagrams for BSL entry via plug or switchable circuit

4.3 Special characteristics of the SAB 8xC166 in bootstrap loader mode

When the internal Boot-ROM is entered and no NMI occurs, an automatic timeout is performed after
a maximum of 100msec (20MHz CPU clock). If the BSL routine in the internal Boot-ROM is started
via an NMI there is no automatic timeout or other termination of the BSL mode, if no proper
connection to a host is installed. The SAB 8xC166 will remain in BSL mode until a hardware reset
is performed without the condition for entering the BSL.

Starting the SAB 8xC166 in BSL mode, the following system configuration is automatically
programmed:

Except for the Watchdog Timer, the system can be reprogrammed to the desired configuration after
the bootstrap loading routine has been performed. The Watchdog Timer is only enabled after a
hardware or software reset.

 Watchdog Timer : disabled S0CON Register : 8011H

 Context Pointer : FA00H TxD/P3.10 : 1

 Stack Pointer : FA40H DP3.10 : 1

 STKUN Register : FC00H SYSCON Register : 0000 0y00 xx00 0000b

 STKOV Register : FA00H y (BUSACT), xx (BTYP)

 S0BG Register : value calculated from
received ‘00’ byte

according to the
selected bus mode

ALE

NMI

Vcc

 SAB

ALE

NMI

Vcc

 SAB

RSTOUT

circuit_1

circuit_2

Vcc

BSL

normal boot

8xC1668xC166

 RALE

Vcc

2 x 74LS125

RALE

RNMI

2.2kΩ

10kΩ

2.2kΩexternal
 signal
SAB 8xC166 -8- SAB 80C166 Family ApNotes

8Oct96@15:19h

Advance Information 9.94

Bootstrap Loader

If the SAB 8xC166 is in BSL mode, all code fetches from the internal address space 0’0000H
through 0’7FFFH (if mapped, 1’0000H-1’7FFFH) of the device are done from the internal Boot-ROM.
Code fetches from this address area are not allowed to the user and would result in unexpected
behavior. All data fetches are done from the internal user memory of the SAB 8xC166. See figure
3. Only after a software reset or a hardware reset (without BSL selection) was performed all code
and data accesses to the internal memory are done from the internal user memory.

Note that due to the activation of the BSL via the NMI, the system operates on the NMI trap level
(trap priority II). Bit NMI in the Trap Flag Register (TFR.15) is set. All traps of class A and class B,
and all interrupts or PECs are disabled, since they cannot interrupt the trap priority II.

Note that it is strongly recommended not to use half-duplex communication else unexpected results
will occur.

4.4 Reset configuration and memory access

Figure 3 shows different possibilities how to configure the system memory via the external pins
BUSACT, EBC0 and EBC1 during reset, and the principle differences in memory access between
a normal reset and a reset with BSL activation.

Configuration I) and II) show the reservation of the first 32 kbytes for internal accesses. The
reservation is independent from the BUSACT pin. As already mentioned the accesses to internal
address space (0’0000H-0’7FFFH) are distinguished between data or code. All code fetches are
done from the internal Boot-ROM that is necessary to start and run the BSL routine after the
hardware reset. After BSL is already started, code fetches from the internal Boot-ROM are not
allowed and would cause undefined results. The data fetches are done from the internal user ROM.
Only when the BSL mode is left by a software or hardware reset, the distinction between code, and
data fetches is terminated. Configuration III) shows a normal system start where the internal ROM
access is enabled, and in configuration IV) only the external memory is enabled.
SAB 80C166 Family ApNotes -9- SAB 8xC166

8Oct96@15:19h

Bootstrap Loader

Advance Information 9.94

x) depends on the external bus configuration
1) All accesses to the internal address space (0’0000H - 0’7FFFH) of a ROMless version
of the SAB 8xC166 result in undefined read values
2)Not allowed, unexpected result will occur

Figure 3: Configuration of system memory after reset

4.5 Which baudrates does the bootstrap loader accept

The BSL calculates the necessary reload value for the baudrate generator from the duration of the
received zero byte which is sent from the host. Due to the resolution of Timer 6 and the resolution
of the baudrate generator there are upper and lower limits concerning the baudrate for correct
transfer.

BSL mode active yes yes no no

EBC0 pin low x) low x)

EBC1 pin low x) low x)

BUSACT pin high low high low

Code fetch int. ROM Boot-ROM access2) Boot-ROM access2) user ROM access1) ----------

Data fetch int. ROM user ROM access1) user ROM access1) user ROM access1) ----------

Mem. config. No.: I) II) III) IV)

int. ROM
enabled

B
oo

t-
R

O
M

us
er

 R
O

M

access to

external
bus
disabled

access to

 int.
RAM

256Kbytes

3

1

0

int. ROM
enabled

B
oo

t-
R

O
M

us
er

 R
O

M

access to

external
bus
enabled

access to

 int.
RAM

256Kbytes

3

1

0

int. ROM
enabled

us
er

 R
O

M

access to

external
bus
disabled

access to

 int.
RAM

256Kbytes

3

1

0

external
bus
enabled

access to

 int.
RAM

256Kbytes

3

1

0

SAB 8xC166 -10- SAB 80C166 Family ApNotes

8Oct96@15:19h

Advance Information 9.94

Bootstrap Loader

4.5.1 Lower limit of the baudrate

The lower limit of the baudrate is specified by the longest zero byte which is measurable with the 16-
bit Timer 6. This period depends on the CPU clock (fCPU) of the SAB 8xC166.

For a system with a 20MHz CPU clock, the lowest allowed baudrate of the host is 687 Baud. See
example. Therefore the lowest standard baudrate which can be used for correct serial
communication with the BSL is 1200 Baud.

4.5.2 Upper limit of the baudrate

For a system with a 20MHz CPU clock a maximum standard baudrate for the host of 19200 Baud
is recommended. Then the maximum deviation between the baudrate of the host and the ASC0 is
lower than 1.6%. A detailed explanation how to calculate the baudrate deviations between host and
ASC0 is shown below.

The upper limit of the baudrate is specified by the maximum deviation of the baudrates between
host and SAB 8xC166 which is allowed for a correct serial data transfer.

Via the contents of the baudrate generator reload value (S0BRL), the baudrate generator of the
SAB 8xC166 allows baudrates with the following values:

That is why not all baudrates are adjustable with the baudrate generator.

From the duration of the zero byte which is sent from the host, the BSL calculates the corresponding
reload value for the baudrate generator with respect to the current CPU clock (fCPU). The calculation
of the reload value is based on the contents of Timer 6 (T6). The contents of Timer 6 is calculated
via the CPU clock and the baudrate of the host:

The division T6/72 is an integer calculation and includes already a reduction of the error caused by
the baudrate generator resolution.

BLow
9
4

fCPU

216
------------⋅>

B166

fCPU

32 S0BRL 1+()⋅--=

S0BRL T6
72
------- 1–= T6

9
4

fCPU

BHost
--------------⋅=,
SAB 80C166 Family ApNotes -11- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94
The maximum deviation between the internal initialized baudrate for ASC0 and the baudrate of the
host during BSL is active (8 data bits, one stopbit, no parity) has to be lower or equal than 2.5%, else
a correct data transfer is not guaranteed. The deviation (FB, in percent) between the baudrate of the
host and the baudrate calculated and initialized by the BSL is:

This baudrate deviation is a not linear function depending on CPU clock and the baudrate of the
host. The maximums of the function (FB) decrease during reduction of baudrate of the host. The
values of the maximums depend on the CPU clock. The baudrates were the maximums and
minimums are located depend on the baudrate values which are generated from the baudrate
generator. The principle is shown in figure 4.

Note that the function (FB) does not consider the tolerances of oscillators and other devices
supporting the serial communication.

4.5.3 Example

The example is calculated for an SAB 8xC166 at 20MHz CPU clock.

Lower limit of the baudrate:

Upper limit of the baudrate:

The real maximum baudrate (BMax) which is supported by the baudrate generator of the SAB
8xC166 is 625kBaud. This maximum baudrate assumes that the baudrate of the host is in the range
from 610KBaud up to 640KBaud, else the deviation between the baudrate of the host and the SAB
8xC166 leaves the allowed tolerance of ±2.5%. See figure 4.

FB
B166 BHost–

B166
-------------------------------- 100⋅= % FB 2.5≤ %,

BLow
9
4

fCPU

216
------------⋅> BLow 687Baud>BLow

9
4

20 106⋅()
216

------------------------⋅>, ,
SAB 8xC166 -12- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader
Figure 4: Real maximum baudrate for the BSL

The baudrate (BHigh) recommended for the upper limit is specified by the maximums of the deviation
function (FB, figure 5).

If the upper limit (BHigh) of the recommended baudrate is not exceeded the whole range of the
baudrate from the lower limit to the recommended upper limit can be used for data transfer. If BHigh
is exceeded then special care has to be taken to the maximums of the baudrate deviation function
FB.

Figure 5: Principle baudrate deviation between host and SAB 8xC166 when the BSL is active

The marked points I) and II) of FB_I) in figure 5 are now explained with a calculated example. The
host baudrates are:

I) : B Host_I) = 40300Baud

II): B Host_II) = 41500Baud

The corresponding deviation FB between host and SAB 8xC166 is calculated in the following steps:

FB

 B Host

2.5%

610 625 640 [kBaud]
BMax

FB

 B Host

2.5%

BLow BHigh

I)

II)

•

•

SAB 80C166 Family ApNotes -13- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94
The result for the second baudrate value (BHost_II) = 41500Baud) is:

The first result FB_I) is not inside of the permitted tolerance of 2.5% but the second one FB_II) is
allowed. The example shows the problem of FB if the range of BLow up to BHigh is exceeded, then
the baudrate of the host has to be carefully selected, else there is no correct data transfer
guaranteed.

5 User software loaded with the bootstrap loader

Normally a program requires more than 32 bytes. Thus, to load larger routines, the 32 bytes
program loaded via the BSL will in most cases be a preloader, now with user-defined start and end
addresses. Since the serial port ASC0 is already initialized to the correct mode and baudrate, no
special actions are necessary. This preloader loaded via the BSL may be used to load extensive
user software to the internal RAM or external memory.

S0BRL T6
72
------ 1–=

B166

fCPU

32 S0BRL 1+()⋅--=

T6
9
4

fCPU

BHost I)–
-----------------------⋅= T6

9
4

20 106⋅
40300

-------------------⋅= T6 1116=

S0BRL 1116
72

------------ 1–= S0BRL 14=

B166
20 106⋅

32 14 1+()⋅------------------------------= B166 41666Baud=

FB I)–
B166 BHost I)––

B166
-- 100⋅= % FB I)–

41666 40300–
41666

------------------------------------ 100⋅= %

,

,,

,,

,

FB I)– 3.2≈ %

FB II)– 0.4≈ %
SAB 8xC166 -14- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader
5.1 How to enable the external memory

After starting the SAB 8xC166 in bootstrap loading mode, a 32 kbyte address range is reserved for
internal accesses. The default address range for this 32 kbyte block is 0’0000H through 0’7FFFH.
However, in order to access external memory in this range, disabling or mapping of this 32 kbyte
block to segment 1 is possible. This disabling or mapping enables the access to the external
memory and must be performed via the following instruction sequence:

MOV SYSCON,#xxxx x0xx YYxx xxxxb ; BUSACT-bit = 0,
; YY: (BTYP=01): maps 32 kbyte block to seg. 1
; YY: (BTYP=10): disables 32 kbyte block

JMPS next ; dummy jump segment to next instruction

next: FAR
MOV DPP0, #m ; update data page pointers
MOV DPP1, #u
MOV DPP2, #v
MOV DPP3, #w
........
........
EINIT ; end of initialization

Notes:

1.) Special care must be taken regarding the address space for this instruction sequence. This
sequence must not be executed within the lower 32 kbyte address space in both, segment 0 and
segment 1. The address space for this instruction sequence has to be either in the internal RAM
or in the external memory outside the scope of the 32 kbyte block before and after the mapping,
otherwise unexpected result will occur.

2.) This instruction sequence has to be performed before the EINIT instruction! After the execution
of EINIT, any operation to enable, disable or map the 32 kbyte block is cancelled.

3.) The ‘MOV SYSCON’ instruction should be used in any case, since the BUSACT bit have to be
set to 0 with the same instruction that changes the BTYP bits. It is not possible to perform this
operation with single bit or bitfield instructions!

4.) The selection of the external bus, reflected via the BTYP bits, is not changed via the MOV
SYSCON instruction, if BUSACT is set to 0 with this instruction. Changes of the bus type before
the EINIT instruction are only performed, if BUSACT is set to 1 with the same instruction.

5.) The initialization sequence ‘jump segment’ and reload all DPPs must be done in one block. After
the whole initialization sequence is done the ROM disabling or mapping is active.

6.) An explicit JMPS mnemonic has to be used. A generic JMP mnemonic (without ‘FAR’) will be
translated by the assembler to a normal JMPA or JMPR instruction.
SAB 80C166 Family ApNotes -15- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94
7.) Do not change the sequence of the instructions. The SYSCON register has to be initialized first
then the dummy jump segment and update of the Data Page Pointers must follow.

8.) After mapping, the 32 kbyte address range (reserved for internal accesses) to memory location
1’0000H through 1’7FFFH or after disabling the 32 kbyte block, in both cases, the external
memory can now be accessed in the address range 00000h through 0’7FFFH. But don’t forget
to enable the WR pin!

5.2 Program examples how to program the BSL

The following programs show how to load and run the user software to the internal or external
memory with the BSL. This is done in three examples. Example 1 checks the communication
between the SAB 8xC166 and the host. Example 2 loads a user program to the internal memory and
example 3 shows how to load a user program to the external memory.

Note that all examples are programmed with a minimum stack size. If extended application software
is used care has to be taken to the stack size.

5.2.1 Example 1: The first test program loaded via the BSL to the internal memory

Because of a gradual development of the software it is recommended to start using the BSL not with
a preloader routine but with a test routine which sends back only an acknowledge byte via the Serial
Channel 0 (ASC0). Thus the basic function of the communication between SAB 8xC166 and host
via ASC0 will be tested. See example program USRSW1.ASM. The program ‘user_software_1’ is
loaded via BSL to start address 0’FA40H and end address 0’FA5FH. This routine sends back an
acknowledge byte ‘03’ to the host via Serial Channel 0. The corresponding memory map is shown
in figure 6.

Note that the SAB 8xC166 is still in BSL mode after the test routine has been executed.
SAB 8xC166 -16- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader

Figure 6: Memory map for user software loaded to the internal RAM

5.2.2 Example 2: Load user software to internal memory

An example how to do this is shown in the two programs PRELOAD1.ASM and USRSW2.ASM. See
appendix. The preloader is loaded via the BSL and located from memory address 0’FA40H to end
address 0’FA5FH. The preloader PRELOAD1. ASM loads the user software to the internal RAM
(start address 0’FA60H) of the SAB 8xC166. When using only the internal RAM, the largest possible
user program loaded by the preloader is 928 bytes. Start address is 0’FA60H and end address is
0’FDFFH. See figure 6. The start of the user software is performed with a jump from the end of the
preloader to the user program start address 0’FA60H. The program USRSW2.ASM sends back an
acknowledge byte ‘05’ to the host via Serial Channel 0. The corresponding memory map is also
shown in figure 6.

0’FFFFH

0’FE00H

0’FA60H

0’FA00H

0’FA40H

SFR

 user
software

preloader

0.5 kbyte

1kbyte

internal
RAM

Code Segment:

0

3

2

1

0’0000H

1’0000H

2’0000H

3’0000H

3’FFFFH

0’FA00H

256
kbytes

or test routine

Stack

GPR

0’FA20H
SAB 80C166 Family ApNotes -17- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94
Note that the SAB 8xC166 is still in the BSL mode after the user software has been executed.

5.2.3 Example 3: Load user software to external memory

This is done in three steps. First a preloader is loaded via the BSL to the internal RAM. Then the
preloader loads an external loader to the internal RAM of the SAB 8xC166 and finally the external
loader stores the user software to the external memory. Figure 7 shows the action items in detail,
how to load the user software to the external memory and figure 8 shows the according system
memory map. Example 3 assumes that the BSL entry circuit_2 is used, otherwise little changes in
the software are necessary.

Now an explanation of example 3 in detail:

After performing a hardware reset including the external circuit_2 for BSL entry, the BSL loads the
preloader (PRELOAD1.ASM, same program as in example 2) via ASC0 to the internal RAM of the
SAB 8xC166 from memory address 0’FA40H to end address 0’FA5FH.

After the BSL has started the preloader, that loads the external loader (EXTLOAD1.ASM) via ASC0
to the internal RAM storing from memory address 0’FA60H.

The external loader is started via the preloader and performs different actions:

1) The external bus is enabled allowing access to the external memory. For this the internal ROM
access is disabled, a dummy jump segment is performed and the Data Page Pointers are
reloaded. Further the WR pin is enabled.

2) The user software is loaded via ASC0 and stored from external memory address 0’1000H, this
location is user defined.

3) A jump instruction to the user program start address 0’1000H is stored to the reset vector location
0’0000H.

4) A jump instruction to the NMI trap routine start address 0’0200H is stored to the NMI trap vector
location 0’0008H.

5) The NMI trap routine is stored from start address 0’0200H, this location is user defined.

6) The last action of the external loader is to execute a software reset.
SAB 8xC166 -18- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader

Figure 7: Action items how to load user software to the external memory and leave the BSL mode

The software reset, performed by the external loader, causes a code fetch from the reset vector
location 0’0000H. Because of the BSL entry circuit_2 (NMI and ALE are connected) the ALE pulse
of the first read access to the external address 0’0000H causes an NMI and therefore a jump to the
NMI trap routine. The first instruction in the NMI trap routine is an EINIT. The EINIT instruction
removes the connection between NMI and ALE via the BSL entry circuit_2. Further the Trap Flag
Register is cleared and a return from interrupt (RETI) is performed.

Hardware reset with an external circuit for BSL entry

The preloader loads and starts the external loader (EXTLOAD1.ASM)

The BSL loads and starts the preloader (PRELOAD1.ASM)

External loader:
1) enables the external memory
2) loads the user software to the external memory,
 start address 01000H(user defined)
3) stores a jump to user software to reset vector location 0’0000H
4) stores a jump to NMI trap routine to NMI trap vector location ‘0008H
5) stores the NMI trap routine to location 0’0200H(user defined)

BSL entry circuit_2 is used
yes no

remove connection
between NMI and ALE

6) software reset !!

BSL entry circuit_2 is used
yes no

The access to external memory location
0’0000H causes an NMI

Jump to NMI trap routine

NMI trap routine:
EINIT removes connection between
ALE and NMI

An EINIT instruction must
be added to the
user software example
(see USRSW3.ASM)

 8xC166 fetches the jump instr. to the user prog. from location 0’0000H

Start of the user software from the external memory

 BSL
mode

normal
 mode
SAB 80C166 Family ApNotes -19- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94

Figure 8: Memory map for user software loaded to the external memory

0’FE00H

0’FA60H

0’FA00H

0’FA40H

SFR

 external
loader

preloader

0.5 kbyte

1kbyte

internal
RAM

Code Segment:

0

3

2

1

0’0000H

1’0000H

2’0000H

3’0000H

3’FFFFH

0’FA00H

256
kbytes

or test routine

3’FFFFH

 1’0000H

JMP to user software

JMP to NMI routine

user
software

0’0000H

0’0008H

0’1000H

(example)

external
memory

external
memory

NMI
trap routine 0’0200H

0’FA20H
STACK

GPR
SAB 8xC166 -20- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader
After the RETI instruction is executed the system performs a code fetch from address 0’0000H (now
without NMI) and then a jump to the start address 0’1000H of the user program.

The user program (USRSW3.ASM) sends back acknowledge bytes ‘07’ in an endless loop via
ASC0. Because of the software reset the SAB 8xC166 has to be initialized. This is done in the
program USRSW3.ASM, it disables the Watchdog Timer, sets the Context Pointer, the Stack
Pointer and initializes ASC0.

Note that the SAB 8xC166 leaves the BSL mode after the software reset. The user software is
performed in normal mode.

6 Appendix
SAB 80C166 Family ApNotes -21- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94
6.1 USER_SOFTWARE_1

$LISTALL

$DEBUG

;+---+
;| Program Name : USRSW1.ASM Rev. : 1.0 |
;| Description : is loaded via the BSL and sent back an |
;| acknowledge byte <03>. |
;| Program start address: 0FA40h |
;+---+
;| Assembler : BSO/Tasking 80166 Assembler Rev. : 3.0 |
;| Author : Mariutti Date : 3.11.93 |
;+---+
;| Revision History: |
;| |
;+---+
NAME USER_SOFTWARE_1

SSKDEF 03 ; stack size 32 words
REGDEF R0

SEC1 SECTION CODE AT 0FA40h ; program start address 0FA40h
MAIN PROC TASK INTNO=0
;+--+
;| initialization | BSL RESET values: Stack Pointer = 0FA40h |
;| | Context Pointer = 0FA00h |
;+--+

MOV STKUN ,#0FA40h ; set Stack Underflow Pointer Register
MOV STKOV ,#0FA20h ; set Stack Overflow Pointer Register
MOV SYSCON,#062C0h ; stack: 32 words, no external bus

;+--+
;| send back an acknowledge byte <03> via ASC0 |
;+--+

MOV S0TBUF, #0003h ; write acknowledge byte <03> to
; transmitbuffer of ASC0

Loop: JMPR LOOP ; wait forever and ever..
RETV

MAIN ENDP
SEC1 ENDS

END
SAB 8xC166 -22- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader
6. 2PRELOADER_1

$LISTALL
$DEBUG
;+---+
;| Program Name : PRELOAD1.ASM Rev. : 1.0 |
;| Description : is loaded via the BSL. PRELOAD1 loads a prog. to |
;| the 8xC16x with a length of 928 bytes via ASC0. |
;| Program start address: 0FA40h |
;+---+
;| Assembler : BSO/Tasking 80166 Assembler Rev. : 3.0 |
;| Author : Mariutti Date : 3.11.93 |
;+---+
;| Revision History: |
;+---+
NAME PRELOADER1

SSKDEF 03 ; stack size 32 words
REGDEF R0

SEC1 SECTION CODE AT 0FA40h ; program start address 0FA40h
MAIN PROC TASK INTNO=0
;+---+
;| initialization | BSL RESET values: Stack Pointer = 0FA40h |
;| | Context Pointer = 0FA00h |
;+---+

MOV STKUN ,#0FA40h ; set Stack Underflow Pointer Register
MOV STKOV ,#0FA20h ; set Stack Overflow Pointer Register

;+---+
;| main program |
;+---+

MOV R0,#0FA60h ; mov start address to R0
LABEL1:JNB S0RIC.7,LABEL1 ; wait until S0RBUF includes data
 MOVB [R0],S0RBUF ; mov data of S0BUF to start address

BCLR S0RIC.7 ; clear bit S0RIC.7 (S0RIR)
CMPI1 R0,#0FDFFh ; compare R0 with end address FDFFh
JMPR CC_NZ,LABEL1 ; jump to LABEL1 if R0 does not include

; end address
JMPA USRSW ; jump to user software (ext. loader)

; start address
RETV

MAIN ENDP
SEC1 ENDS

SEC2 SECTION CODE AT 0FA60h ; user software (external loader)
; start address 0FA60h

USRSW:
SEC2 ENDS

END
SAB 80C166 Family ApNotes -23- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94

 |
6.3 USER_SOFTWARE_2

$LISTALL
$DEBUG
;+---+
;| Program Name : USRSW2.ASM Rev. : 1.0 |
;| Description : is loaded via PRELOAD1 and sent back an |
;| acknowledge byte <05>. |
;| Program start address: 0FA60h |
;+---+
;| Assembler : BSO/Tasking 80166 Assembler Rev. : 3.0 |
;| Author : Mariutti Date : 3.11.93 |
;+---+
;| Revision History: |
;| |
;+---+

NAME USER_SOFTWARE_2

SSKDEF 03 ; stack size 32 words
REGDEF R0

SEC1 SECTION CODE AT 0FA60h ; program start address 0FA60h
MAIN PROC TASK INTNO=0
;+---+
;| initialization | BSL RESET values: Stack Pointer = 0FA40h |
;| | Context Pointer = 0FA00h |
;+---+

MOV STKUN ,#0FA40h ; set Stack Underflow Pointer Register
MOV STKOV ,#0FA20h ; set Stack Overflow Pointer Register
MOV SYSCON,#062C0h ; stack: 32 words, no external bus

;+---+
;| send back an acknowledge byte <05> via ASC0
;+---+
 MOV S0TBUF, #0005h ; write acknowledge byte <05> to

; transmitbuffer of ASC0
LOOP: JMPR LOOP ; wait forever and ever.. . . .

RETV
MAIN ENDP
SEC1 ENDS

END
SAB 8xC166 -24- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader

|

 |
6.4 EXTERNAL_LOADER_1

$LISTALL
;+---+
;| Program Name : EXTLOAD1.ASM Rev. : 1.0 |
;| Description : stores a user program to the external memory |
;| installs a jump to the user program |
;| and the NMI# trap routine. Performes a sw RESET |
;| Program start address: 0FA60h |
;+---+
;| Assembler : BSO/Tasking 80166 Assembler Rev. : 3.0 |
;| Author : Mariutti Date : 3.11.93 |
;+---+
;| Revision History: |
;| |
;+---+
NAME EXTERNAL_LOADER_1
 SSKDEF 03 ; stack size 32 words
 REGDEF R0-R5
sec1 SECTION CODE AT 0FA60h
main PROC TASK INTNO=0
;+---+
;| disable int. ROM, dummy jump segment and reload all Data Page Pointer
;+---+

MOV SYSCON,#06280h ; disable internal ROM
; stack size: 32 words

JMPS SEG sec1, next_line ;dummy jump seg. to next instructon
next_line: far

MOV DPP0,#0h ; update Data Page Pointer
 MOV DPP1,#1h

MOV DPP2,#2h
MOV DPP3,#3h

;+---+
;| enable WR# pin, enable and init. ext. bus to system configuration
;+---+

BSET P3.13 ; set WR pin to HIGH level
BSET DP3.13 ; define WR pin to output
MOV SYSCON,#06640h ; enable external bus, 8bit mux

;+---+
;| load user software via ASC0 and store it to ext. mem. startadr: 1000h |
;+---+

MOV R5,#01000h ; mov addr 1000 to R5
label1: JNB S0RIC.7,label1 ; wait until S0RBUF includes data

MOVB [R5],S0RBUF ; store data of S0BUF
BCLR S0RIC.7 ; clear bit S0RIC.7 (S0RIR)
CMPI1 R5,#0139fh ; compare R5 with end address
SAB 80C166 Family ApNotes -25- SAB 8xC166

8Oct96@15:19hBootstrap Loader Advance Information 9.94

|

 JMPR cc_NZ,label1 ; jump to label1 if R5 does not include
 ; end address

;+---+
;| store a jump to user program start addr. to reset vector loc. 0000h |
;+---+
 MOV R4,#0000h ; move (jmpa #01000h) to addr 0000h
 MOV R5,#00EAh

MOV [R4],R5
MOV R4,#0002h

 MOV R5,#01000h
 MOV [R4],R5
;+---+
;| store a jump to NMI# trap routine to NMI# trap vector location 0008h
;+---+
 MOV R4,#0008h ; move (jmpa #00200h) to addr 0008h
 MOV R5,#00EAh

MOV [R4],R5
 MOV R4,#000Ah
 MOV R5,#00200h
 MOV [R4],R5
;+---+
;| store NMI# trap routine from start address 0200h |
;+---+
 MOV R4,#00200h ; EINIT: the external BSL circuit_2
 MOV R5,#04AB5h ; removes the connection between
 MOV [R4],R5 ; ALE and NMI#
 MOV R4,#00202h
 MOV R5,#0B5B5h
 MOV [R4],R5

 MOV R4,#00204h ; MOV TFR, ZEROS
 MOV R5,#0D6F2h
 MOV [R4],R5
 MOV R4,#00206h ;
 MOV R5,#0FF1Ch
 MOV [R4],R5

 MOV R4,#00208h ; RETI
MOV R5,#088FBh

 MOV [R4],R5
;+--+
;| leave the BSL mode via a software reset |
;+--+

SRST ; software reset
sec1 ENDS

END
SAB 8xC166 -26- SAB 80C166 Family ApNotes

8Oct96@15:19hAdvance Information 9.94 Bootstrap Loader
6.5 USER_SOFTWARE_3

$LISTALL
$DEBUG
;+---+
;| Program Name : USRSW3.ASM Rev. : 1.0 |
;| Description : initializes the system after a software reset |
;| and sends back an acknowledge byte <07> via ASC0. |
;| Program start address: 01000h |
;+---+
;| Assembler : BSO/Tasking 80166 Assembler Rev. : 3.0 |
;| Author : Mariutti Date : 3.11.93 |
;+---+
;| Revision History: |
;+---+
NAME USER_SOFTWARE_3

SSKDEF 03 ; stack size 32 words
REGDEF R0

SEC3 SECTION CODE AT 01000h
MAIN PROC TASK INTNO=0
;+--+
;| initialization after software reset |
;+--+

 DISWDT ; disable watchdog timer
 MOV CP ,#0FA00h ; set registerbank
 MOV SP ,#0FA40h ; set stackpointer

MOV STKUN ,#0FA40h ; set Stack Underflow Pointer Register
MOV STKOV ,#0FA20h ; set Stack Overflow Pointer Register

 MOV S0BG ,#003Fh ; Baud rate 9600 Baud
 BSET P3.10 ; initialize TXD0 output
 BSET DP3.10 ;
 MOV S0CON ,#8011h ; initialize serial port 0:

; 8-bit data, no parity, one stopbit, receiver enabled
 BSET P3.13 ; set WR pin to HIGH level
 BSET DP3.13 ; define WR pin to output
 MOV SYSCON ,#06640h ; stack: 32 words,

; enable external bus, 8bit mux
;+--+
;| send back acknowledge bytes <07> via ASC0 |
;+--+
LOOP: MOV S0TBUF ,#0007h
TRANSMIT:JNB S0TIC.7, TRANSMIT

 BCLR S0TIC.7
 JMPR LOOP

RETV
MAIN ENDP
SEC3 ENDS

END
SAB 80C166 Family ApNotes -27- SAB 8xC166

	1 Introduction
	2 Purpose of a bootstrap loader
	3 General operation of the bootstrap loader
	4 Hardware environment to use the bootstrap loader...
	4.1 How to activate the bootstrap loader
	4.2 Hardware example for bootstrap loader activati...
	4.3 Special characteristics of the SAB 8xC166 in b...
	4.4 Reset configuration and memory access
	4.5 Which baudrates does the bootstrap loader acce...

	5 User software loaded with the bootstrap loader
	5.1 How to enable the external memory
	5.2 Program examples how to program the BSL
	5.2.1 Example 1: The first test program loaded via...
	5.2.2 Example 2: Load user software to internal me...
	5.2.3 Example 3: Load user software to external me...

	6 Appendix

